
Technical Report
TTIC-TR-2010-1

March 2010

Dynamic Well-Spaced Point Sets

Umut A. Acar
Max-Planck Institute for Software Systems
umut@mpi-sws.org

Andrew Cotter
Toyota Technological Institute at Chicago
cotter@ttic.edu

Benoı̂t Hudson
Toyota Technological Institute at Chicago
bhudson@ttic.edu

Duru Türkoğlu
University of Chicago
duru@cs.uchicago.edu

ABSTRACT

In a well-spaced point set the Voronoi cells all have bounded aspect ratio, i.e., the distance from the Voronoi site to
the farthest point in the Voronoi cell divided by the distance to the nearest neighbor in the set is bounded by a small
constant. Well-spaced point sets satisfy some important geometric properties and yield quality Voronoi or simplicial
meshes that can be important in scientific computations. In this paper, we consider the dynamic well-spaced point
sets problem, which requires computing the well-spaced superset of a dynamically changing input set, e.g., as input
points are inserted or deleted. We present a dynamic algorithm that allows inserting/deleting points into/from the
input in worst-case O(log ∆) time, where ∆ is the geometric spread, a natural measure that yields an O(log n) bound
when input points are represented by log-size words. We show that the runtime of the dynamic update algorithm is
optimal in the worst case. Our algorithm generates size-optimal outputs: the resulting output sets are never more than
a constant factor larger than the minimum size necessary. A preliminary implementation indicates that the algorithm
is indeed fast in practice. To the best of our knowledge, this is the first time- and size-optimal dynamic algorithm for
well-spaced point sets.

1 Introduction
Given a hypercubeB in Rd, we call a set of points M ⊂ B well-spaced if for each point p ∈ M the ratio of the distance
to the farthest point ofB in the Voronoi cell of p divided by the distance to the nearest neighbor of p in M is small [28].
Well-spaced point sets are strongly related to meshing and triangulation for scientific computing, which require meshes
to have certain qualities. In two dimensions, a well-spaced point set induces a Delaunay triangulation with no small
angles, which is known to be a good mesh for the finite element method. In higher dimensions, well-spaced point sets
can be post-processed to generate good simplicial meshes [7, 17]. The Voronoi diagram of a well-spaced point set is
also immediately useful for the control volume method [19].

Given a d-dimensional hypercube B ⊂ Rd, we define the well-spaced point set problem as constructing a well-
spaced output M ⊂ B that is a superset of a given set of input points N ⊂ B. We can construct the output by extending
the input set with so called Steiner points, taking care to insert as few Steiner points as possible. We call the output and
the algorithm size-optimal if the size of the output, |M|, is within a constant factor of the size of the smallest possible
well-spaced superset of the input. This problem has been studied since the late 1980s (e.g., [5, 9, 24]), with several
recent results obtaining fast runtimes [12, 14, 15, 27]. We are interested in the dynamic version of the problem, which
requires maintaining a well-spaced output (M) while the input (N) changes dynamically due to insertion and deletion
of points. Upon a modification to the input, the dynamic algorithm should efficiently update the output preserving size-
optimality with respect to the new input. There has been relatively little progress on solving the dynamic problem.
Existing solutions either do not produce size-optimal outputs (e.g., [8, 23]) or they are asymptotically no faster than
running a static algorithm from scratch [11, 18, 20].

In this paper, we present a dynamic algorithm for the well-spaced point set problem. Our algorithm always returns
size-optimal outputs and requires worst-caseO(log ∆) time for an input modification (an insertion or a deletion). Here
∆ is the geometric spread, a common measure, defined as the ratio of the diameter of the input space to the distance
between the closest pair of points in the input. If the geometric spread is polynomially bounded in the size of the input
then log ∆ = O(log n) (e.g., when the input is specified using log n-bit number). Our algorithm consumes linear
space in the size of the output and our update runtime is optimal in the worst-case.

To solve the dynamic problem, we first present an efficient algorithm for constructing size-optimal, well-spaced
supersets (sections 4, 5, and 6). To enable dynamization, in addition to the output, the algorithm constructs a compu-
tation graph that represents the operations performed during the execution and the dependencies between them. A key
property of this algorithm is that it is stable in the sense that it produces similar computation graphs and outputs with
similar inputs, e.g., that differ by one point. We make this property precise by describing a distance measure between
the computation graphs and bounding this distance byO(log ∆) when inputs differ by a single point (lemma 7.5). Tak-
ing advantage of this bound, we design a change-propagation algorithm that performs dynamic updates in O(log ∆)
time by identifying the operations that are affected by the modification to the input and deleting/re-executing them as
necessary (section 8). For the lower bound, we show that there exist inputs and modifications that require Ω(log ∆)
Steiner points to be inserted to the output (section 9).

The approach of designing a stable algorithm and then providing a dynamic update algorithm based on change
propagation is inspired by recent advances on self-adjusting computation (e.g., [2, 16]). In self-adjusting computation,
programs can respond automatically to modifications to their data by invoking a change propagation algorithm [1].
The data structures required by change propagation are constructed automatically. Our computation graphs are ab-
stract representations of these data structures. Similarly our dynamic update algorithm is an adaptation of the change
propagation algorithm for the problem of well-spaced point sets. Self-adjusting computation is found to be effective
in kinetic motion simulation of three-dimensional convex hulls [3]. Although these initial findings are empiricial, they
have motivated the approach that we present in this paper. Since our approach takes advantage of the structure of
a static algorithm to perform dynamic updates, it can be viewed as a dynamization technique, which has been used
effectively for a relatively broad range of algorithms (e.g., [6, 10, 22, 25]).

The efficiency of our dynamic update algorithm directly depends on stability. We design a stable algorithm that
maintains several invariants. First, we structure the computation into Θ(log ∆) levels—ranks and colors—such that
the operations in each level depend only on the previous levels [27]. Second, we pick Steiner points by making local
decisions only, using clipped Voronoi cells [15]. These techniques enable us to process each point only once and help
isolate and limit the effects of a modification. Furthermore, our dynamic update algorithm returns an output and a
computation graph that are isomorphic to those that would be obtained by executing from scratch the static algorithm

1

with the modified input (lemma 8.2). Consequently, the output remains both well-spaced and size-optimal with respect
to the modified input (theorem 8.3).

To assess the effectiveness of the proposed dynamic algorithm, we present a prototype implementation and report
the results of a preliminary experimental evaluation (section 10). Our experimental results confirm our theoretical
bounds, showing linear speedups over re-computing from scratch. These results suggest that a well-optimized imple-
mentation can perform very well in practice.

2 Preliminaries
Given a set of points N, we define the geometric spread (∆) to be the ratio of the diameter of N to the distance between
the closest pair in N. We say that a d-dimensional hypercube B is a bounding box if N ⊂ B and each edge of B has
length within a constant factor of the diameter of N. Without loss of generality, we scale and shift the point set N such
that B = [0, 1]d becomes a bounding box.

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

a

c

d

b

v

Figure 1: M = {a, b, c, d, v}.
NNM(v) = |va|. Thick solid
and dashed boundaries show
VorρM(v) and VorβM(v), where
ρ = 2 and β = 4. The ρ-clipped
Voronoi neighbors of v are a and
b. Shaded region is the (ρ, β)
picking region of v.

Given N as input, our algorithm constructs a well-spaced output M ⊂ B that
is a superset of N. We use the term point to refer to any point in B and the term
vertex to refer to the input and output points. Consider a vertex setM⊂ B. The
nearest-neighbor distance of v inM, written NNM(v), is the distance from v to the
nearest other vertex inM. The Voronoi cell of v inM, written VorM(v), consists
of points x ∈ B such that for all u ∈ M, |vx| ≤ |ux|. Following Talmor [28], a
vertex is ρ-well-spaced if the intersection of its Voronoi cell with B is contained
in the ball of radius ρNNM(v) centered at v;M is ρ-well-spaced if every vertex
inM is ρ-well-spaced. The β-clipped Voronoi cell of v, written VorβM(v), is the
intersection of VorM(v) with the ball of radius βNNM(v) centered at v [15].
For any β > ρ, we define the (ρ, β) picking region of v, written Vor(ρ,β)

M (v), as
VorβM(v) \ VorρM(v), the region of the Voronoi cell bounded by concentric balls
of radius ρNNM(v) and βNNM(v). A vertex u is a (β-clipped) Voronoi neighbor
of v if the (β-clipped) Voronoi cell of v contains a point equidistant from v and u.
Figure 1 illustrates some of these definitions.

Given an input set N, the local feature size of a point x ∈ B, written lfs(x),
is the distance from x to the second-nearest vertex in N. The output M is size-
conforming if there exists a constant c independent of N such that for all v ∈ M,
NNM(v) < c · lfs(v). Our algorithm guarantees that the output is size-conforming;
this implies size-optimality [24].

3 Dynamic Balanced Quadtree
Our algorithm uses a point location structure based on the balanced quadtree of Bern, Eppstein, and Gilbert [5], which
is relatively straightforward to dynamize and extend to d dimensions. We use “quadtree” to mean 2d-tree and “quadtree
node” to mean d-hypercube. Our well-spaced point set algorithm treats the quadtree almost as a black box; it uses
only the leaves of the quadtree, which we refer to as squares. We define a valid d-dimensional balanced quadtree to
be the minimal quadtree which satisfies the following three properties:

• Partitioning: every internal node contains all of its 2d children.

• Crowding: every leaf node of the quadtree contains at most one vertex, and if it does, none of its neighbors
contain a vertex.

• Grading: all neighbors of any internal node exist in the quadtree.

Here, we define the neighbors of a quadtree node to be the nodes in each of the 3d−1 cardinal and diagonal directions,
at the same level. In a valid quadtree, the set of squares partitions the space defined by the quadtree, and any two

2

adjacent squares, i.e, two squares that share a common border, are either neighbors or at consecutive levels. To support
fast traversal and access, a quadtree node keeps pointers to its parent, children, and neighbors. Additionally, every
square contains a pointer to an input vertex it may contain, and a list of Steiner vertices.

The quadtree supports the functions QTBuild, QTAdd, QTRemove, QTApxNN, and QTClippedVoronoi.
The function QTBuild(N) constructs a quadtree for a set of n vertices N in O(n log ∆) time. It may be imple-
mented most simply by calling QTAdd for each input vertex. The functions QTAdd(Π, v∗) and QTRemove(Π, v∗)
respectively add or remove an input vertex v∗ into or from N and update the quadtree Π to match the new input
in O(log ∆) time. They return the updated quadtree Π′ and the set of squares of Π that are deleted or become
internal quadtree nodes. The function QTApxNN(v) returns the size (side length) |s| of the quadtree square s contain-
ing v. The validity of the quadtree guarantees that this value is in Ω(NNN(v)) and less than NNN(v). The function
QTClippedVoronoi(v, β) returns the β-clipped Voronoi cell of v in O(1) time under certain assumptions that our
algorithm meets [15]. It also returns the nearest neighbor distance of v.

The QTAdd function may be implemented as follows: first, determine the square which contains the new vertex
by performing a top-down traversal of the quadtree. If this square already contains an input vertex, then split it and
descend into the child containing the new vertex, repeating as necessary. Finally, insert the new vertex into the resulting
(currently empty) square. This entire operation requires O(log ∆) time, as the depth of the quadtree is bounded by
O(log ∆). In order to restore validity, impose the crowding and grading conditions. For crowding, simply enumerate
every square which could possibly be crowded by the new vertex, check if it is crowded, and if so, split it. The
following lemma follows immediately from the definition of the crowding property; it implies that there are only a
constant number of squares at each level, and hence O(log ∆) overall, which need to be checked:

Lemma 3.1 During a call to QTAdd, if a node must be split due to crowding, then either it or one of its neighbors
contains the newly-inserted vertex.

The grading condition may be imposed similarly: by enumerating all squares which could possibly be split due
to grading in response to the insertion of the new vertex, checking the grading condition, and performing splits as
necessary. The following lemma (very similar to lemma 1 of [21]), when combined with lemma 3.1, implies that there
are only O(log ∆) squares which need to be checked:

Lemma 3.2 During a call to QTAdd, if a node must be split due to grading, then a descendent of one of its neighbors
must have been split due to crowding.

Proof: We prove this result by bounding the distance over which grading splits may “propagate” in the quadtree, in
response to an originating crowding split. Suppose that φ′ has been split due to crowding. Let `′ be the depth (in the
quadtree) of φ′, and δ` an upper bound on the distance in each coordinate from φ′ to any node at depth ` < `′ which
must be split due to grading in response to φ′ being split. We prove by induction on ` < `′ that δ` ≤ 2−`. For the base
case, ` = `′ − 1, the only nodes which must be split at depth ` are the nodes that are adjacent to φ′, and they are at
distance ≤ 2−`. By the definition of the grading property, if φ is a quadtree node at depth ` − 1 which must be split,
it follows that a neighbor of one of φ’s children must have been split. The side length of φ’s children is 2−`, and by
the inductive assumption each of these children is at distance at most δ` ≤ 2−` from φ′. Adding these two quantities
yields that δ`−1 ≤ 2−(`−1), completing the induction. Because the side length of nodes at depth ` is 2−`, this result
implies that if φ must be split at depth `, then φ′ is either a descendent of φ, or of one of its neighbors.

We have now shown that the entire QTAdd function may be implemented in O(log ∆) time. We will prove one
final result, which characterizes the squares which became internal nodes during the call to QTAdd:

Lemma 3.3 For any square s ∈ Π that is returned by QTAdd(Π, v∗), we have |sv∗| ∈ O(|s|).

Proof: Lemmas 3.1 and 3.2 prove that every split square s is at most a neighbor’s neighbor of the quadtree node
containing v∗ at the same level as s. Hence, |sv∗| ≤ 2

√
d|s|.

The QTRemove function essentially performs the same steps as QTAdd, in reverse. It first descends through the
quadtree in order to locate the quadtree square containing the vertex, and erases it. Next, motivated by lemmas 3.1
and 3.2, it checks all ancestors of this square, their neighbors and neighbors’ neighbors, all in a bottom-up fashion,
merging them if they are no longer crowded, and do not need to be split due to grading. An analogue of lemma 3.3
holds for QTRemove:

3

Lemma 3.4 For any square s ∈ Π that is returned by QTRemove(Π, v∗), we have |sv∗| ∈ O(|s|).

Proof: Every square returned by QTRemove is a child of a square which would be split by QTAdd, were the deleted
vertex to be re-inserted into the quadtree. The proof of lemma 3.3 shows that all such squares satisfy the claim, so
their children will also.

4 A Stable Algorithm
We can construct a well-spaced superset of an input set by repeatedly “filling” each vertex of the superset by applying
a fill operation to it. When applied to some vertex v, which we say that it acts on, a fill operation makes the vertex
ρ-well-spaced by inserting Steiner vertices into its Voronoi cell. Although correct, this basic algorithm is not efficient
because the Voronoi cells can be arbitrarily complex (thus requiring super-constant time to compute), and because
filling a vertex may adversely affect the well-spacedness of already processed vertices requiring them to be filled
multiple times. This algorithm is also unstable, because inserting/deleting a single vertex into/from the input can
result in very different outputs because the presence/absence of a vertex can affect the choice of many subsequent
Steiner vertices.

To address these problems, we refine the basic algorithm to schedule carefully the fill operations such that 1) each
fill operation requires constant time, 2) each vertex is filled at most once, 3) the algorithm is stable. To achieve these
three properties, which we make precise and prove in the rest of the paper, we start by refining the fill operation so
that instead of inserting points inside the Voronoi cell, it inserts points within the (ρ, β) picking region of the vertex
that it acts on (figure 1). We then carefully order the fill operations so that no vertex is filled more than once and fill
operations can be performed in constant time. These refinements yield an efficient algorithm. To ensure stability, we
further refine the algorithm to identify certain fill operations as independent, which makes it possible to re-execute
one operation without affecting another independent operation. In the rest of this section, we briefly describe these
refinements and present the pseudo-code for the algorithm (figure 3).

Given a vertex setM, consider applying a fill operation to a vertex v ∈ M that is not ρ-well-spaced. Let w be a
Steiner vertex this operation inserts.

Fact 1 The Steiner vertex w is in Vor(ρ,β)
M (v). That is, ∀u ∈M, |wv| ≤ |wu| and ρNNM(v) ≤ |wv| < βNNM(v).

Since v is the nearest neighbor of w, this fact implies that NNM(w) ≥ ρNNM(v). Generalizing this simple observa-
tion, we infer the following.

Fact 2 For any given α > 0 if every vertex u ∈M with NNM(u) < α is ρ-well-spaced then NNM(w) ≥ ρα.

Suppose that vertices whose nearest neighbors are at distance less than α are all ρ-well-spaced. The second fact
implies that inserting a Steiner vertex does not change the nearest neighbors and hence the well-spacedness of the
vertices whose nearest neighbors are at distance less than ρα. Taking advantage of this property, we partially order the
vertices by assigning ranks to them. More precisely, we define the rank of a vertex v ∈ M as the logarithm in base ρ
of its nearest neighbor distance, i.e.,

⌊
logρ NNM(v)

⌋
. We then fill the vertices in the order of their ranks. With this

partial ordering, for example, the fill operations acting on vertices with nearest neighbor distances in [ρr, ρr+1) would
be at rank r. Note that for any ρ > 1, this partial order has only a logarithmic number of levels, O(log ∆) in particular.
As we prove in lemma 6.3, this ordering ensures that fill operations run in O(1) time.

We ensure stability by identifying independent fill operations. We say that two fill operations at rank r are inde-
pendent if, when executed (in either order), no operation inserts a Steiner vertex that becomes a β-clipped Voronoi
neighbor of the vertex acted on by the other. We identify independent fill operations by using a coloring scheme that
partitions the space based on a coloring parameter κ, and a real valued function `(r) defined on ranks. At each rank r,
we partition the space into d-dimensional hypercubes or r-tiles with side length `(r). We color r-tiles such that they
are colored periodically in each dimension with period κ, using κd colors in total. A fill operation at rank r that acts
on a vertex v has color c ∈ {1, 2, . . . , κd} if v lies in a c colored r-tile. Figure 2 illustrates a coloring scheme. By
choosing `(r) small enough and κ large enough, we prove that two fill operations at the same rank are independent if
they have the same color (lemma 7.1).

4

Dimension: d, Parameters: ρ, β, κ, `(r)

StableWS (N) =

Ω← ∅ ; Π← QTBuild(N)

for each v ∈ N do
Ω← Ω ∪ {NewOp(v,

¨
logρ QTApxNN(v)

˝
, 0,nil)}

for r = min rank in Ω to
j
logρ
√
d
k
do

for each op ∈ Ω|r,0 do Dispatch (op,Ω)

for c = 1 to κd do
for each op ∈ Ω|r,c do Fill (op,Ω)

return (N,Π)

Fill (op,Ω) =

(v, nnv,CV)← QTClippedVoronoi(op, β)

while v is not ρ-well-spaced (via CV) do
choose w ∈ CV such that |vw| ≥ ρ · nnv
op.steiners← op.steiners ∪ {w}
Ω← Ω ∪ {NewOp(w,

¨
logρ |wv|

˝
, 0, op)}

update CV with w

Dispatch (op,Ω) =

(v, nnv,CV)← QTClippedVoronoi(op, β)

r ←
¨
logρ nnv

˝
if r ≥ op.rank then

Ω← Ω ∪ {NewOp(v, r,Color(v, r), op)}
for each β-clipped Voronoi neighbor w of v do
r ←

¨
logρ |wv|

˝
if r ≥ op.rank then

Ω← Ω ∪ {NewOp(w, r,Color(w, r), op)}

Color (v, r) =

for i = 1 to d do ci ← bvi/`(r)c mod κ

return (c1, c2, . . . , cd) as a d digit number

NewOp (v, r, c, parent) =

op← CreateOp(v) ; op.rank← r ; op.color← c

parent.children← parent.children ∪ {op}
op.children, op.steiners← ∅ ; return op

Figure 3: Pseudo-code for our stable algorithm.

}

}

`(r)

κ`(r)

Figure 2: Illustration of a color-
ing scheme in 2D (κ = 2).

Figure 3 shows the pseudo-code of the algorithm. The pseudo-code follows
the description quite closely except for the computation of ranks. Our algorithm
critically relies on ordering the computation by assigning ranks to vertices and
filling them in that order. Since the rank of a vertex depends on its nearest neighbor
and since that can change as Steiner vertices are inserted, we need to update ranks
dynamically. To achieve this, we assign ranks to fill operations and use another type
of operation, called dispatch, to compute and update ranks. The unique dispatch
operation acting on a vertex v also has a rank and runs before the fill operations
acting on v. The rank of a dispatch operation acting on an input vertex v is an
O(1)-approximation (from below) of the rank of v, and those that act on Steiner
vertices are assigned exact ranks. When executed, a dispatch operation computes
the rank of v, creates a fill operation for v at that rank, and creates fill operations for its β-clipped Voronoi neighbors
in order to update their ranks. This approach guarantees that after the execution of the dispatch operations at rank r,
every vertex either has a fill operation at its up-to-date rank, or a dispatch operation at rank greater than r. When
executed, a fill operation makes well-spaced the vertex it acts on, subsequent fill operations terminate immediately
without inserting Steiner vertices. We prefer this approach because it simplifies the analysis by making explicit the
dependencies between operations. As we prove in theorem 5.4 this algorithm computes correctly and efficiently a
ρ-well-spaced superset of its input.

The algorithm StableWS starts by constructing a quadtree Π and stores it for use in dynamic updates. It then
computes the output M by creating (via NewOp) and performing dispatch and fill operations which it stores in Ω. The
algorithm assigns a rank and a color, the pair of which we refer to as time, to each operation and executes them in time
order. The dispatch operations are assigned the color zero. In the pseudo-code, we use Ω|r,c to refer to the operations
with time (r, c). In the analysis, we refer to time as a single entity rather than its components (rank and color). For
brevity, we define time t = 0 to be the beginning of time, when the dispatch operations for the input are created but
before any operations are performed, and define time t = ∞ to be the end of the algorithm. We write Mt to refer to
the output at time t, e.g., M0 is the input, N, and M∞ is the output, M. For readability, we use t instead of Mt in the
subscript, e.g., NNt instead of NNMt

.
To support efficient dynamic updates, while executing, the algorithm constructs a computation graph of all exe-

cuted operations and dependencies between them. The computation graph G = (V,E) consists of nodes, V = Σ∪Ω,
comprised of the set of squares (Σ) and the set of all operations (Ω), and directed edges representing various de-
pendencies between operations and squares. Consider executing an operation op. If op creates an operation op′

then (op, op′) becomes an edge (recorded by storing op′ in the children field of op). If op reads a square s via

5

QTClippedVoronoi then (s, op) becomes an edge (recorded in the square s). Finally, if op writes into a square s
by inserting a Steiner vertex w into it then (op, s) becomes an edge (recorded by storing w in the steiners field
of op). We tag each edge with the time of the operation that creates it, in the example above, this is the time of op.

5 Output Quality and Size
This section includes the proofs on the quality of the output of our algorithm, that M is ρ-well-spaced and size-optimal.
Lemma 5.3 proves size-optimality by showing that M is size-conforming. For ρ-well-spacedness, the first two lemmas
prove that our algorithm fills vertices in such an order that satisfies the key invariant that after filling a vertex, it
becomes and remains ρ-well-spaced. Therefore, our algorithm incrementally progresses towards a ρ-well-spaced
output. In these two lemmas, letM be the set of vertices in the output at the beginning of rank r.

Lemma 5.1 At the beginning of rank r, assume that every vertex u ∈M with NNM(u) < ρr is ρ-well-spaced. Then,
for every vertex w ∈M with NNM(w) ∈ [ρr, ρr+1), there exists a fill operation that acts on w at rank r.

Proof: Pick a vertex w ∈ M, let u be its nearest neighbor inM, and assume that ρr ≤ |wu| < ρr+1. Let opw and
opu be the dispatch operations that act on w and u respectively. If opw runs at rank ≤ r and u is in the output when
opw is executed then opw schedules a fill operation that acts on w at rank r. Alternatively, opu schedules such a fill
operation if opu runs at rank ≤ r and w is a β-clipped Voronoi neighbor of u when opu is executed.

Analyzing the vertices w and u, in two cases, we prove that the first condition holds. In the first case, if both w
and u are input vertices then opw runs at rank ≤ r. In the second case, that w is a Steiner vertex and u is in the output
when w is being created, consider the vertex v that creates w. By fact 1, we know that |wv| ≤ |wu|, which implies
that opw runs at rank ≤ r.

We prove that the second condition holds in the remaining case, that u is a Steiner vertex and that w is already
in the output when u is being created. Similar to the previous case, we deduct that opu runs at rank ≤ r. Since u is
the nearest neighbor of w inM, w is a Voronoi neighbor of u inM′, whereM′ ⊂ M is the set of vertices in the
output when opu is executed. If u is ρ-well-spaced inM then |wu| ≤ 2ρNNM(u) < 2βNNM′(u). Otherwise, the
assumption of the lemma implies ρr ≤ NNM(u). Since |wu| < ρr+1, we get |wu| < ρNNM(u) < 2βNNM′(u).
Either way, w is a β-clipped Voronoi neighbor of u inM′.

Lemma 5.2 (Progress) At the beginning of rank r, every vertex u ∈M with NNM(u) < ρr is ρ-well-spaced.

Proof: We use induction. At the minimum rank, there are no vertices with smaller nearest neighbor distance, so the
claim is trivially true. Assume that the lemma holds up to rank r, that is, every vertex u ∈ M with NNM(u) < ρr

is ρ-well-spaced. For rank r + 1, letM′ ⊃ M be the set of vertices in the output at the beginning of rank r + 1 and
consider a vertex w ∈ M′ with NNM′(w) < ρr+1. If w ∈ M′ \ M then w is a Steiner vertex inserted at rank r.
Repeatedly applying fact 2 for each (Steiner) vertex inM′ \ M, we see that the nearest neighbors of these Steiner
vertices are at distance ≥ ρr+1; in particular, NNM′(w) ≥ ρr+1. This is a contradiction, thus, w ∈ M. Furthermore,
NNM(w) < ρr+1 for similar reasons. If NNM(w) < ρr then by our induction hypothesis w is ρ-well-spaced.
Otherwise, by lemma 5.1, there exists a fill operation that acts on w at rank r. After executing that operation, w
becomes ρ-well-spaced. Finally, fact 2 implies that w remains ρ-well-spaced. Therefore, our claim holds.

Lemma 5.3 The output M is size-conforming and size-optimal with respect to N.

Proof: We use induction over the order in which the algorithm inserts Steiner vertices and show that there exists a
constant c such that for every v ∈ M, we have cNNM(v) ≥ lfs(v), thereby proving that M is size-conforming. In the
base case, every vertex is an input vertex and the nearest neighbor of an input vertex is exactly the local feature size.
For the inductive case, assume that there exists a constant c such that, for every v ∈M, we have cNNM(v) ≥ lfs(v).
Furthermore, assume that v inserts a Steiner vertex w and the new output is M′ = M ∪ {w}. We analyze the
inductive claim for w and for any vertex u ∈ M separately. For w, by fact 1 we know that |wv| ≥ ρNNM(v) and
NNM′(w) = |wv|. By the triangle inequality, lfs satisfies the Lipschitz condition: lfs(v) + |wv| ≥ lfs(w). By the
inductive hypothesis, cNNM(v) ≥ lfs(v). Therefore, we have (cρ + 1)|wv| = (cρ + 1) NNM′(w) ≥ lfs(w).

6

For any vertex u ∈ M, if NNM(u) = NNM′(u) then the claim holds trivially. Otherwise, assume that
NNM(u) > NNM′(u) = |wu|. By the Lipschitz condition, we have |wu| + lfs(w) ≥ lfs(u) and by fact 1 we know
|wu| ≥ |wv|. Combining these by the bound we obtained for lfs(w), we get (cρ+2)|wu| = (cρ+2) NNM′(u) ≥ lfs(u).
Solving for c ≥ c

ρ + 2, we conclude that any c ≥ 2ρ
ρ−1 suffices to prove the inductive step. Therefore, M is size-

conforming and hence size-optimal [24].

Theorem 5.4 StableWS constructs a size-optimal ρ-well-spaced superset M of its input N.

Proof: The property that M is ρ-well-spaced follows from the Progress Lemma and the fact that StableWS iterates
over all ranks. Lemma 5.3 proves the size bound.

6 Runtime
We analyze the running time of our static algorithm and emphasize two lemmas that are useful in the analysis of our
dynamic algorithm. The first lemma (lemma 6.1) proves that throughout the algorithm, the nearest neighbor distance
of a vertex v changes only by a constant factor. The second (lemma 6.2) proves that all operations acting on v have
rank blogρ NN∞(v)c ±O(1); none are scheduled too early or too late.

Lemma 6.1 Let t be the time at which v is created (t = 0 for input vertices). Then, NNt(v) ∈ Θ(NN∞(v)).

Proof: As time progresses, more vertices are added, so the nearest neighbor distance can only shrink: NNt(v) ≥
NN∞(v). For the upper bound, we analyze input vertices and Steiner vertices separately. By definition, an input
vertex v has lfs(v) = NN0(v). The algorithm is size-conforming (lemma 5.3), so NN0(v) = lfs(v) ∈ O(NN∞(v)).
For a Steiner vertex w that is created at time t = (r, c), fact 1 implies that ρr+1 ≤ NNt(w) ≤ βρr+1. For any
other Steiner vertex u that is created later, the same fact implies that ρr+1 ≤ |uw| which means ρr+1 ≤ NN∞(w).
Therefore, NNt(w) ≤ βρr+1 ≤ βNN∞(w).

Lemma 6.2 If an operation at rank r acts on v then NN∞(v) ∈ Θ(ρr).

Proof: Consider an operation op that acts on a vertex v at time t = (r, c). If op is a dispatch operation and v is an
input vertex then the call QTApxNN(v) returns a value in Θ(NN0(v)) which implies NN0(v) ∈ Θ(ρr). By lemma 6.1,
we know that NN0(v) ∈ Θ(NN∞(v)), therefore, the result follows.

Otherwise, let op′ be the operation that creates op, and assume that op′ acts on u at time t′ = (r′, c′). Since op′

schedules op to be executed at rank r, we know that r =
⌊
logρ |uv|

⌋
. Since NNt(v) ≤ |uv|, we get NNt(v) < ρr+1.

Thus, the upper bound holds: NN∞(v) ≤ NNt(v) ∈ O(ρr). For the lower bound, from lemma 5.3, we have
NN∞(v) ∈ Ω(lfs(v)). By definition, lfs(v) ≥ NNt′(v), and since r =

⌊
logρ |uv|

⌋
, we have |uv| ≥ ρr. Thus, it

suffices to show that NNt′(v) ∈ Ω(|uv|). Since op′ creates op, we know that v is a β-clipped Voronoi neighbor of
u at time t′, which means that u is a Voronoi neighbor of v at time t′. If NNt′(v) < ρr

′
then by Progress Lemma,

v is ρ-well-spaced at time t′. Therefore, 2ρNNt′(v) ≥ |uv| and we are done. If NNt′(v) ≥ ρr
′
, we know that

|uv| ≤ 2βNNt′(u) because v is a β-clipped Voronoi neighbor of u. Applying the upper bound result from above for
op′, we get NNt′(u) ∈ O(ρr

′
), thus, |uv| ∈ O(ρr

′
). Since NNt′(v) ≥ ρr′ , this implies NNt′(v) ∈ Ω(|uv|).

Lemma 6.3 Every operation runs in O(1) time.

Proof: Pick an operation acting on v at time t = (r, c). The main costs are the QTClippedVoronoi calls and the
loops. The Progress Lemma shows that every vertex u ∈ Mt with NNt(u) < ρr is ρ-well-spaced and lemmas 6.2 and
6.1 together show that NNt(v) ∈ Θ(ρr). Hudson and Türkoğlu show that these are sufficient conditions to guarantee
that QTClippedVoronoi runs in constant time [15].

The dispatch operation iterates over each β-clipped Voronoi neighbors. Since QTClippedVoronoi runs in
constant time, there is only O(1) neighbors. The fill operation has a loop that inserts Steiner vertices until v is

7

ρ-well-spaced. For each inserted Steiner vertex w, fact 1 implies NNt(w) ≥ ρNNt(v). Thus, we can associate non-
overlapping empty balls of radius ρNNt(v)/2 around every Steiner vertex. Since the Steiner vertices are in a ball of
radius βNNt(v) around v, a packing argument shows that each fill operation inserts O(1) Steiner vertices.

Lemma 6.4 For every vertex v ∈ M, there are O(1) operations that act on v.

Proof: By lemma 6.2, we know that any operation that acts on v has rank
⌊
logρ NN∞(v)

⌋
±O(1). Therefore, if we

can show that the number of the operations that acts on v at each rank is constant, our claim will hold. There is only
one dispatch operation for each vertex, so we only need to count fill operations scheduled by other dispatch operations.
Fix r and consider a dispatch operation at time t′ = (r′, 0) that acts on u and schedules a fill operation that acts on v at
rank r. Then, v is β-clipped Voronoi neighbor of u, in other words, |uv| ≤ 2βNNt′(u). The fact that the fill operation
is scheduled for rank r implies ρr ≤ |uv| < ρr+1. Considering the dispatch operation, lemmas 6.1 and 6.2 show that
NNt′(u) = O(ρr

′
). These facts altogether imply ρr = O(ρr

′
). Again by lemma 6.2, we know that there exists an

empty ball around u with radius Ω(ρr
′
) which is Ω(ρr) by the previous assertion. We already know that |uv| < ρr+1,

therefore, a packing argument proves our claim.

Theorem 6.5 StableWS runs in O(n log ∆) time.

Proof: As proven in section 3, building the quadtree takes O(n log ∆) time. By lemmas 6.3 and 6.4, the rest of the
algorithm takes O(m) time, where m = |M|. The total runtime is O(n log ∆ +m). That m ∈ O(n log ∆) follows
from our dynamic bounds.

7 Dynamic Stability
We call two inputs N and N′ related if they differ by one vertex, i.e., N′ can be obtained from N by inserting or deleting
a vertex. To analyze the stability of the algorithm StableWS, we define a notion of distance between two executions
with related inputs. We prove that this distance is bounded by O(log ∆) in the worst-case, where ∆ is the larger
geometric spread of the inputs N and N′ (lemma 7.5).

As described in section 4, StableWS(N) creates a computation graph G = (V,E) by building quadtree squares
Σ and a set of operations Ω. The set of nodes V is Σ∪Ω; the edges E represent the dependencies in the computation.
For another input set N′ which is related to N, consider running StableWS(N′) and creating G′ = (V ′, E′), Σ′, and
Ω′ similarly. We define two squares s ∈ Σ and s′ ∈ Σ′ to be identical, written s ≡ s′, if s and s′ have the same
corner points. Also, two operations op ∈ Ω and op′ ∈ Ω′ are identical, written op ≡ op′, if op and op′ have the
same time and act on the same vertex. There exists a unique function µ : V ′ → V , µ = µo ∪ µs, where µo is the
largest set satisfying µo = {(op′, op) | op′ ∈ Ω′ ∧ op ∈ Ω ∧ (op′ ≡ op) ∧ (parent(op′), parent(op)) ∈ µo} and
µs = {(s′, s) | s′ ∈ Σ′ ∧ s ∈ Σ ∧ s′ ≡ s}. We call µ the matching between G′ and G. Informally, µ pairs squares of
G′ with identical squares of G and pairs operations of G′ with identical operations of G as long as their parents (the
operations that create them, if any) are also paired. We say that nodes u′ ∈ V ′ and u ∈ V match if µ(u′) = u. We
denote the domain and the range of µ by dom(µ) and range(µ).

Given G = (V,E) and G′ = (V ′, E′) and their matching µ, let µ′ = µ ∪ {(u, u) | u ∈ V ′ \ dom(µ)} be a total
function defined on the nodes V ′ ofG′. We combine the computation graphs in a union graphG∪ = (V ∪µ′(V ′), E∪
µ′(E′)), where µ′(E′) = {(µ′(u), µ′(v)) | (u, v) ∈ E′}. The union graph injects G′ into G under the guidance of
µ by extending G with the unmatched nodes of G′, unifying the matched nodes, and adding the edges of G′ while
redirecting them to the matched nodes appropriately. In order to capture the dependencies between two operations,
we define a path in the union graph to be a dependency path if the times of the edges on the path do not decrease.
Lemma 7.1 allows us to refine this definition: a path (u0, u1, . . . , uh) is a dependency path if the times of the edges
(u0, u1), (u1, u2), . . . , (uh−1, uh) increase monotonically.

Lemma 7.1 Set coloring parameters `(r) and κ such that `(r) < ρr/
√
d and κ > 1 + 3βρr+1/`(r). Then, any two

fill operations at the same rank are independent if they have the same color.

8

Proof: Consider two fill operations, opv and opu, at the same rank and color acting on vertices v and u respectively.
Let r be the rank of these operations andM be the set of vertices in the output at the beginning of rank r. If both v
and u are ρ-well-spaced inM then opv and opu do not insert any Steiner vertices. Thus, opv and opu are independent.
Otherwise, if v is not ρ-well-spaced the Progress Lemma implies that NNM(v) ≥ ρr. Since `(r) < ρr/

√
d, the

diameter of an r-tile is less than ρr, and thus v and u cannot be in the same r-tile. Since opv and opu have the
same color, v and u are far apart, more precisely, |vu| ≥ (κ − 1)`(r) > 3βρr+1. By fact 1, we know that any
Steiner vertex w that opv inserts satisfies |vw| ≤ βNNM(v). By the existence of opv and opu, we already know
NNM(v),NNM(u) < ρr+1. Using the triangle inequality, we get |uw| ≥ |vu| − |vw| > 2βρr+1 > 2βNNM(u).
The last inequality asserts that w cannot be a β-clipped Voronoi neighbor of u. Similar arguments can be made for u
as well; therefore, the operations opv and opu are independent.

We partition the nodes of the union graph G∪ = (V ∪, E∪) into several categories. The nodes V − = V \ range(µ)
are called obsolete (squares Σ−, operations Ω−); these are the nodes ofG that have no matching pairs inG′. The nodes
V + = V ′ \ dom(µ) are called fresh (squares Σ+, operations Ω+); these are the nodes of G′ that have no matching
pairs in G. Furthermore, we call a square s ∈ V ∪ inconsistent if it is fresh or obsolete, or if it contains the vertex v∗ of
the symmetric difference of N and N′. We define an operation op ∈ range(µ) to be inconsistent if it is reachable from
an inconsistent square via a dependency path. We represent inconsistent nodes with V × (squares Σ×, operations Ω×).
We define the distance between the executions with related inputs N and N′ to be the number of obsolete, fresh, or
inconsistent operations of the union graph, i.e., |Ω− ∪ Ω+ ∪ Ω×|.

Lemma 7.2 For every operation in Ω− ∪ Ω+ ∪ Ω×, there exists a dependency path from a square in Σ×.

Proof: By definition of inconsistent operations, an operation op ∈ Ω× can be reachable via a dependency path
from Σ×. For unmatched operations, assume towards a contradiction that there exist an operation in Ω− ∪ Ω+ that is
not reachable from Σ×. Let op be the earliest of such operations. Let us assume that op is a dispatch operation acting
on an input vertex v. Since op does not depend on an inconsistent square, it does not read an inconsistent square.
Therefore, v is in N ∩ N′ and lies in identical squares in both executions, which implies that QTApxNN(v) returns the
same value for v in both executions and that their ranks are the same. Then, the definition of µo matches op with op′

because op and op′ are identical. Therefore, op is not a dispatch operation acting on an input vertex. Then, consider
the operation op′′ that creates op. By minimality of op, op′′ can be reached via a dependency path from a square in
Σ×. Extending that path to op proves the contradiction.

As proven by Hudson and Türkoğlu [15], the function QTClippedVoronoi satisfies the following locality prop-
erty: for a given input N, a size-conforming set of verticesM⊃ N, and a square s read by QTClippedVoronoi, for
all x ∈ s, |vx| ∈ O(NNM(v)). This property allows us to relate the operations on a dependency path geometrically.

Lemma 7.3 Consider two operations op and op′ in G∪ acting on vertices v and w. If there exists a dependency path
from op′ to op and op is at rank r, then |vw| ∈ O(ρr).

Proof: First, we show that for any edge inG∪, the distance between its nodes is short. We define the distance between
a square and an operation to be the distance from the vertex of the operation to the farthest point in the square, and the
distance between two operations to be the distance between the vertices on which they act. Consider an edge e ∈ E
with time te = (re, ce). The edge e consists of an operation op1 ∈ Ω acting on v at time te and either a square s
that it accesses (reads/writes) or another operation op2 that it schedules. Using the locality result stated above, we
bound the distance between op1 and s by O(NNte(v)). Also, op2 is within the same distance. Lemmas 6.1 and 6.2
bound NNte(v) by O(ρre); thus, the distance between the nodes of e is at most αρre , where α is a constant. The same
analysis applies for any edge e′ ∈ E∪.

By definition of dependency paths, the times of the edges on a dependency path from op′ to op monotonically
increase. Assuming that the rank of op′ is r′, there can be at most κd edges for each rank between r′ and r. Therefore, in

the worst case, the distance between v and w is bounded by
∑r
i=r′ κ

dαρi = ακd ρ
r+1−ρr′

ρ−1 < ακd ρ
r+1

ρ−1 . Consequently,
|vw| ∈ O(ρr).

In order to bound the distance between the executions with inputs N and N′ which generate outputs M and M′, we
focus on the vertices rather than the operations. We define a vertex to be affected if there exists an obsolete, a fresh,

9

Global queues: Ω	,Ω⊕,Ω⊗

PropagateWS (N,Σ⊗) =

MarkReaders (Σ⊗, 0)

for each s ∈ Σ⊗ and each v ∈ N ∩ vertices of s do
Ω	 ← Ω	 ∪ {Dispatch of v}
Ω⊕ ← Ω⊕ ∪ {NewOp(v,

¨
logρ QTApxNN(v)

˝
, 0,nil)}

for r = min rank in Ω	 ∪ Ω⊕ ∪ Ω⊗ to
j
logρ
√
d
k
do

UndoOps (r, 0)

for each op ∈
`
Ω⊕ ∪ Ω⊗

´˛̨
r,0

do Dispatch (op,Ω⊕)

for c = 1 to κd do
UndoOps (r, c)

for each op ∈
`
Ω⊕ ∪ Ω⊗

´˛̨
r,c

do

Fill (op,Ω⊕)

S ← squares containing op.steiners

MarkReaders (S, (r, c))

MarkReaders (bΣ, t) =

for each s ∈ bΣ and each op that reads s do
if (op.rank, op.color) > t then Ω⊗ ← Ω⊗ ∪ {op}

Add (N,Π, v∗) =

(Π′,Σ−)← QTAdd(Π, v∗)

opv∗ ← NewOp(v∗,
¨
logρ QTApxNN(v∗)

˝
, 0,nil)

Ω⊕ ← {opv∗}; Ω	,Ω⊗ ← ∅
PropagateWS(N,Σ− ∪ {square of v∗})
return (N ∪ {v∗},Π′)

Remove (N,Π, v∗) =

(Π′,Σ−)← QTRemove(Π, v∗)

Ω	 ← {Dispatch of v∗}; Ω⊕,Ω⊗ ← ∅
PropagateWS(N,Σ− ∪ {square of v∗})
return (N \ {v∗},Π′)

UndoOps (r, c) =

for each op ∈
`
Ω	 ∪ Ω⊗

´˛̨
r,c

do

Ω	 ← Ω	 ∪ op.children
S ← squares containing op.steiners

MarkReaders (S, (r, c))

remove all vertices in op.steiners

Ω⊗ ← Ω⊗ \ Ω	
˛̨
r,c

ResetEdges(Ω⊗
˛̨
r,c

)

Figure 4: Pseudo-code for the dynamic algorithm.

or an inconsistent operation that acts on it. Since there is a constant number of operations acting on a given vertex
(lemma 6.4), the number of affected vertices measures the distance asymptotically. We define the sets of affected
vertices in both executions: M̂ = {v | op ∈ Ω− ∪ Ω× acts on v} and M̂′ = {v | op ∈ Ω+ ∪ Ω× acts on v}. The next
two lemmas bound the number of affected vertices.

Lemma 7.4 For any vertex v ∈ M̂, |vv∗| ∈ O(NNM(v)) and for any v ∈ M̂′, |vv∗| ∈ O(NNM′(v)).

Proof: We prove the lemma for v ∈ M̂; symmetric arguments apply for M̂′. By definition of M̂, there exists an
operation opv ∈ Ω−∪Ω× acting on v at rank r. Lemma 7.2 suggests that there exists a dependency path from a square
s ∈ Σ× to opv . Let opu be the operation on this path that reads s; opu acts on a vertex u at rank ru. By lemma 7.3,
we know that |vu| ∈ O(ρr). By that fact that opu reads s, we know |us| is in O(ρru) and by lemmas 3.3 and 3.4
the quadtree functions QTAdd and QTRemove guarantee that |sv∗| ∈ O(|s|) which is in O(ρru) as well. Using the
triangle inequality and the fact that ru ≤ r, we bound |vv∗| by O(ρr). It only remains to prove that there is a ball
around v of radius Ω(ρr) empty of vertices of M. Lemma 6.2 proves precisely this.

Lemma 7.5 (Distance) The distance between two executions with related inputs is bounded by O(log ∆).

Proof: The distance is asymptotically bounded by the sizes of the affected sets of vertices |M̂| and |M̂′|. Consider
the vertices v ∈ M̂ with |vv∗| ∈ [2i, 2i+1). By lemma 7.4, we can assign non-overlapping empty balls of radius Ω(2i)
to them. Therefore, there is a constant number of such vertices for any i. At most O(log ∆) values of i cover M̂, so
|M̂| ∈ O(log ∆). Similar arguments apply to M̂′.

8 Dynamic Update Algorithm
We describe an algorithm for dynamically updating the output of StableWS when the input is modified by inser-
tion/deletion of a vertex, prove it correct (lemma 8.2) and efficient (theorem 8.3).

Our dynamic update algorithm is a change-propagation algorithm. Given the input modification, the update al-
gorithm re-executes the actions of the stable algorithm for the part of the computation affected by the modification
and undoes the part of the computation that becomes obsolete. More precisely, the algorithm maintains distinct set of

10

operations for removal Ω	 (obsolete operations), for execution Ω⊕ (fresh operations), and for re-execution Ω⊗ (in-
consistent operations), which contain the operations that become obsolete, that need to be executed, and that become
inconsistent respectively; inconsistent operations are updated by deleting their old versions and executing them again,
which may now perform actions different than before. The algorithm removes and executes operations in the same
order as the stable algorithm. It uses the UndoOps to remove obsolete operations and the Dispatch and Fill
operations of the stable algorithm for executing fresh operations.

v*

Figure 5: Dynamic update after
insertion of v∗. Solid vertices
are input (N), vertices marked +
are inserted, vertices marked − are
deleted. Gray squares are inconsis-
tent. The four smaller gray squares
are fresh; they replace the bigger ob-
solete square.

Figure 4 shows the pseudo-code for the Add and Remove functions for in-
serting and deleting a vertex v∗ into and from the input, and the PropagateWS
function for dynamic updates. Given v∗, Add/Remove updates the quadtree,
determines the set of inconsistent squares Σ⊗, and initializes the fresh/obsolete
set by creating a dispatch operation or by marking the old dispatch operation
acting on v∗. Both functions then call PropagateWS.

The PropagateWS function starts by updating the operation sets by find-
ing the input vertices that are contained in the inconsistent squares, deleting
their dispatch operations, and creating new dispatch operations for them. It
also initializes the inconsistent operation set, as MarkReaders marks incon-
sistent all operations that read an inconsistent square, a square in Σ⊗. The al-
gorithm then proceeds in time order, first undoing the obsolete and inconsistent
operations and then performing the fresh and inconsistent operations by calling
Dispatch and Fill (figure 3). The UndoOps function undoes the work
of obsolete and fresh operations by marking all of their children for removal
and by deleting quadtree dependencies (edges) from the computation graph. It
also prepares the live inconsistent operations for re-execution by resetting their
dependencies. The MarkReaders function expands the set of inconsistent
operations as the set of vertices in a square changes due to removed or freshly
executed fill operations.

As their notation suggests, the obsolete, fresh, and inconsistent operations
used by the algorithm correspond to those defined in the stability analysis;
lemma 8.1 makes this correspondence precise.

Lemma 8.1 The set of operations processed in the dynamic update algorithm, Ω	 ∪ Ω⊕ ∪ Ω⊗, is equal to the set of
obsolete, fresh, and inconsistent operations, Ω− ∪ Ω+ ∪ Ω×.

Proof: Let A = Ω	 ∪ Ω⊕ ∪ Ω⊗ and B = Ω− ∪ Ω+ ∪ Ω×. Towards a contradiction, assume that B 6⊂ A and let op
be the earliest operation in B \A. If op ∈ Ω− then either op is a dispatch operation acting on an input vertex or there
is another operation op′ ∈ Ω− ∪ Ω× that creates op. In the first case, op depends on a square in Σ×, which implies
op ∈ A. In the second case, by the minimality of op, op′ ∈ A. Since the update algorithm processes all children of
op′, op ∈ A. Similar arguments show that op ∈ Ω+ implies op ∈ A. Therefore op must be in Ω×, i.e., there exists
a dependency path from a square s ∈ Σ× to op. Pick the longest dependency path that reaches op and let op′ 6= op
be the latest operation on that path. If no such op′ exists then op is a dispatch operation acting on an input vertex
that reads a square from Σ×. The initialization in PropagateWS puts op in A. In the other case that op′ exists, by
minimality of op, op′ is in A and the dependency path from op′ to op ensures that our update algorithm schedules op
to one of the sets Ω	, Ω⊕, or Ω⊗, depending on the type of dependency between op and op′. Contradiction.

For the other direction, similarly assume the contrary and let op be the earliest operation inA\B. If op ∈ Ω	 then
either op is a dispatch operation acting on an input vertex or there is another operation op′ ∈ Ω	 ∪ Ω⊗ that creates
op. In the first case, op depends on a square in Σ×, which implies op ∈ B. In the second case, by minimality of
op, op′ ∈ B. If op′ ∈ Ω× then by the definition of dependency paths, we get op ∈ B. Otherwise, op′ ∈ Ω− and
any operation that op′ creates, more specifically op, cannot be matched by the matching µ, hence op ∈ B. Similar
arguments show that op ∈ Ω⊕ implies op ∈ B. Therefore op must be in Ω⊗, i.e., op reads a square s for which the
algorithm calls the function MarkReaders (s, t) with a smaller time t than the time of op. If s ∈ Σ⊗ then clearly
op ∈ B; otherwise, there is another operation op′ running at time t that writes into s. Again, by minimality of op,
op′ ∈ B and there exists a dependency path from op′ to op which puts op in B by lemma 7.2. Contradiction.

11

When completed, PropagateWS updates the output to M̃ and the computation graph to G̃ as if StableWS is
run from-scratch with N′ as input, computing M′ and G′.

Lemma 8.2 (Isomorphism) The output sets M̃ and M′ are equal and there exists an isomorphism φ : G̃ → G′ that
preserves the vertex and time of each operation.

Proof: We prove equality of the output and build φ inductively. We define the sets of operations according to their
creation times: Ω	t = {op ∈ Ω	 | op is created at time < t} (Ω	0 is the set of dispatch operations acting on input
vertices). Define a similar assemblage for the ⊕, ⊗, and ′ sets. Let G̃t be the subgraph of G̃ induced by the nodes
Ω̃t ∪ Σ̃ excluding the edges with time ≥ t; the excluded edges are related to the execution of operations at time ≥ t.
Define G′t similarly and let M̃t be the updated set of vertices obtained by removing and inserting vertices until time t,
just before the executing operations at time t.

Initially, M̃0 = M′0 = N′ and Σ̃ = Σ′. Therefore, there exists an isomorphism φ0 : G̃0 → G′0. Assume the
inductive hypothesis at time t, that M̃t = M′t and that we have an isomorphism φt : G̃t → G′t. Pick op ∈ Ω̃t with
time t and let op′ = φt(op). We aim to prove that op and op′ execute in the same way. Because our functions are all
deterministic, it suffices to show that op and op′ read the same data. There are three cases: op is either in Ω⊕t , or in
Ω⊗t , or otherwise op is an operation that has not been modified.

Assume that op is in Ω⊕t . We know Σ̃ = Σ′, therefore, op and op′ traverse the same quadtree structure in their
execution. For a vertex v that op reads, v cannot be in M	t because the vertices in M	t are removed at time < t. Thus,
op reads only the vertices in M̃t = M′t, in other words op reads the same data as op′ does. The case that op ∈ Ω⊗t is
similar, because the re-execution of the inconsistent operations follow the same rules. In the remaining case, op is not
modified. Consider a square s that op accesses. Because the update algorithm did not schedule op for re-execution, we
know that s is not in Σ−. Furthermore, for the same reason, s does not contain a vertex in M	t ∪M⊕t . Therefore, op
only reads vertices in M′t ∩Mt; op reads the same data as op′ does. Hence, in all cases, op and op′ execute similarly.

We have a natural correspondence between the operations that op and op′ create and the Steiner vertices they insert
(in any). Therefore, M̃t+1 = M′t+1. Furthermore, because op and op′ read and write the same squares the edges inci-
dent to these operations have natural correspondences as well. Extending φt to φt+1 by adding these correspondences
completes proof of the inductive step.

Theorem 8.3 The Add and Remove functions modify the output in O(log ∆) time and maintain a ρ-well-spaced
output of optimal-size with respect to the updated input.

Proof: By lemma 8.2, we know that the output is the same as what would have been generated by executing from
scratch StableWS with the new input, therefore, theorem 5.4 applies. As discussed in section 3, the quadtree can be
updated in O(log ∆) time. Also, lemma 8.1 relates the runtime of the update algorithm to the distance between the
executions with the old and new inputs. Finally, lemma 7.5 bounds the runtime of PropagateWS as desired.

9 Lower bound

Figure 6: Inserting x
creates Ω(log ∆) fresh
Steiner vertices.

We present a lower bound proving that any algorithm which explicitly maintains a well-
spaced superset requires Ω(log ∆) time per dynamic update. Consider dynamically insert-
ing a new point very close to an existing input vertex. Even the optimal dynamic algorithm
is forced to insert geometrically growing rings of new Steiner vertices around the dynami-
cally inserted vertex. We prove that we can iterate this process using a gadget. This shows
that our algorithm is worst-case optimal compared to all other explicit algorithms, even in
an amortized setting.

We define a gadget (see figure 6) consisting of points in the hypercube [0, k−1/d]d.
Consider two vertices at distance 1/∆ from each other in the middle of the box; let one
of them be the dynamic vertex x which will be inserted later. Also, consider a grid of
O(1) vertices on each of the faces of the hypercube, chosen according to the scheme of
Hudson [13, p.79]. The input N consists of tiling [0, 1]d with the gadgets, k1/d for each dimension, without any
dynamic vertex. The dynamic modification sequence consists of inserting k dynamic vertices, one for each gadget.

12

0
10

20
30

0
25

0
50

0
75

0
0 2500 7500

2D
 e

xa
ct

 o
ps

 (
m

ill
io

ns
)

3D
 e

xa
ct

 o
ps

 (
m

ill
io

ns
)

Input points

2D
3D

●●●●●●●●●

●
●● ●●

●●
●●

●
●
●●●●●

●●
●

●
●
●

●●

●

●●
●

●●

●

●●
●

●

●
●
●

●

●●

●
●

●

●●

●●●

●
●

●

● ●

●

●

●

●●

●
●
●

●

●
●

●
●

●●

●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●
●

●●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

● ●

●

●

●

● ●

●

● ●●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

● ●
●●

●●

● ●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

● ●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
● ● ● ● ● ● ● ● ●●

● ●● ●●
●

● ●●●
●
●
●

●
●

●
●

●
●

●
●

●●
●●

●
●

●●●● ● ●● ●●●
●

●
●

● ● ●●● ● ●●
●

●
●

●
● ●● ●

●
●

●
●

●
●

●
●

●
●

●
●

●● ● ●●● ● ● ● ● ●
●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●

●
●

●
●

●
●

●●
●

●
●

●
●

●● ● ● ●●● ● ●●
●
●
●
●
●

●
●
● ● ● ●●

●
● ●

● ●
●
●●

●
●
●

●
●

●
●

●
●● ● ●●● ● ● ●●●●● ●●● ● ●

●
●
●
●
●
●
●

● ● ●●● ●
● ●

●
●

●
●
●
●
●

●
●

●
●

●
●
●●●

●
●

●
●●●

●●
●●

●
●
●
●
●
●
●
●
●

●●
●

●●●●
●

●
●
●
●
●
●
●

●
●
●
●●●●●●●●●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●●●●

●
●●

●●●
●

●
●●●

●●
●●●●●●●●●

●
●●●●●

●
●
●
●●●

●
●
●

●
●

●
●●

●●
●

●●
●
●

●
●

●
●

●
●
●
●

●●
●

●
●
●
●●

●
●
●
●
●
●

●●●
●

●
●
●

●
●
●●●●●●●

●
●
●
●
●

●
●

●
●

●
●

●●
●

●●
●

●
●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●
●

●
●

●●
●

●
●●●

●●

●
● ●

●●

●
●

●
●

●
●

●●
●●● ● ● ●

●
●

● ● ●●
●●●

●
●

●
●●●●●

●●●●●●

●
●
●● ● ● ● ●

●
●●●●●●

●
●●

●●
●

●
●● ●

● ●
●●●

●●

●●

●●

●●

●●

●●

0
10

0
20

0
30

0
40

0
50

0

0
2

4
6

8
10

0 2500 7500

2D
 s

pe
ed

up

3D
 s

pe
ed

up

Input points

2D
3D

Figure 7: Left: cost of StableWS on random inputs. Center: A model of Lake Superior meshed by StableWS.
Right: speedup of PropagateWS one unit changes relative to StableWS from scratch.

Lemma 9.1 Inserting the dynamic vertex to a single gadget requires inserting Ω(log ∆) Steiner vertices.

Proof: Let N be the input before adding the dynamic vertex x. Any size-optimal output M of N has O(1) Steiner
vertices inside the gadget box. Consider inserting x and let N′ = N∪{x} and δ = NNN′(x). Draw the segment from x
to the farthest point in VorN′(x). This segment has length at least ` = 1

4−
δ
2 . Consider the Voronoi diagram of a ρ-well-

spaced superset M′ of N′ and consider the Voronoi cells that this segment cuts. Let v1, v2, . . . be the vertices of those
Voronoi cells, in order. We know that the vertices in M′ are ρ-well-spaced, therefore, |v1x| ≤ 2ρNNN′(x) = 2ρδ.
Also, the nearest neighbour distance of v1 is at most |v1x|. We can use the same argument to get |v1v2| ≤ 2ρ|v1x| and
repeat. In other words, distance from x grows only geometrically as we walk down the segment: covering the distance
` requires Ω(log 1/δ) = Ω(log ∆) many Steiner vertices. This implies that M differs from M′ in at least O(log ∆)
vertices.

Theorem 9.2 (Lower Bound) There exists an initial input and a set of n dynamic insertions that forces any algorithm
to insert Ω(n log ∆) new Steiner vertices.

Proof: In the above scheme, let k = n. Then, we would like to prove that inserting n dynamic vertices requires
inserting Ω(n log ∆) Steiner vertices. We refer to a technique of inserting vertices to the hypercube faces [13]. It was
developed precisely to make sure that certain algorithms need not add vertices outside the hypercube when making
the interior ρ-well-spaced. Contrapositively, adding vertices outside a gadget does not help make the gadget, with its
dynamic vertex, be ρ-well-spaced. Thus the prior lemma applies to each gadget individually, showing that the final
ρ-well-spaced superset must contain at least Ω(n log ∆) Steiner vertices, for a carefully selected ρ. Since there exists
a constant ρ > 1 such that the original input of n gadgets is ρ-well-spaced, the initial output must be of size O(n).
This completes our proof.

10 Implementation & Experiments
We implemented1 the StableWS and PropagateWS algorithms in C++. Given a set of vertices N, StableWS
computes a well-spaced superset M of N and PropagateWS updates the output dynamically as the input is modified
by insertions and deletions. Our implementation is a preliminary prototype: it follows closely the algorithmic descrip-
tion with minor optimizations. As with other meshing software (e.g., [26]), ours is highly susceptible to numerical
error. We therefore use an exact arithmetic package based on floating-point filters which is functional and reasonably
fast, but is nonetheless far from being the fastest available. We have verified the correctness of our implementation by
considering numerous randomly generated inputs and some real models.

1Source code is available for download at http://nagoya.uchicago.edu/∼cotter/projects/wsp

13

Application d Input size # Operations in Millions # Operations per vertex
SVR StableWS PropagateWS SVR StableWS

New Zealand 2 18595 56 115 0.248 403 1190
Cape Cod 2 20930 47 99 0.234 423 1170
Lake Superior 2 33487 90 188 0.303 419 1190
SF Bay 2 85910 191 393 0.239 425 1170
Bunny 3 35947 1090 3220 307 5330 22500
Armadillo 3 172974 4380 13400 572 5460 22600

Table 1: Operation counts for SVR and StableWS, and for unit changes with PropagateWS.

In all experiments, we chose ρ =
√

2, and β = 2 in 2D or β = 2
√

2/
√

3 in 3D, with the color parameters
`(r) = ρr−1/2/

√
d and κ = d1 + 3

√
dβρ3/2e. For both two and three dimensions κ is 16; the number of colors in 2D

is 162 = 256 and in 3D it is 163 = 4096.

10.1 Synthetic Data
In these experiments, we generate point sets of double-precision floating-point numbers drawn uniformly at random
from the unit box in 2D and 3D. For a given input, we measure the cost of running StableWS on the entire input,
and the average cost of performing an update after a unit dynamic change that removes a random input vertex, up-
dates the output using PropagateWS, adds a new vertex, and updates again. To focus on algorithmic concerns we
use exact arithmetic operation counts to measure run-time cost. These dominate runtime even in highly optimized
implementations.

Figure 7 shows the speedup of dynamic updates calculated as the ratio of the cost of running StableWS to the
average cost of one dynamic update with PropagateWS. Each plotted point is the average over 100 different unit
dynamic changes on each of 10 random inputs. We include 2D and 3D measurements on the same plot; note that
the y-axis scales are different (the constant factors are larger in 3D). Consistent with our analysis, the measurements
indicate that in both 2D and 3D the cost of StableWS grows close to linearly with the input sizes, while dynamic
updates yield linear speedups.

10.2 Real Data
This second round of experiments was performed using several real-world models (e.g., from the Stanford 3D scanning
repository), on which we compare the performances of StableWS and PropagateWS (the latter, again, with unit
changes) to one of the fastest available well-spaced superset implementations, SVR [4]. We use a version of SVR that
has been modified to use the same quality criteria as our algorithms, and which tracks and outputs exact arithmetic
operation counts. Depending on other parameter settings, the algorithms can generate outputs of slightly different
sizes (the variance is often less than 50%). We therefore provide the cost per output vertex, which offers a better basis
of comparison. Table 1 shows our measurements. For each output vertex, our prototype of StableWS performs at
most four times as many operations as SVR; cumulative cost measures are consistent with these results. Dynamic
updates are at least two orders of magnitude faster than SVR in 2D, and still provide a large benefit in 3D.

11 Conclusion
We present a dynamic algorithm for computing a well-spaced point set of a dynamically changing set of input points.
Our algorithm is efficient, finds an optimal-size output, consumes linear space, and responds to dynamic modifications
in worst-case optimal time. The underlying technique to these results is a stable algorithm for computing well-spaced
point sets whose executions can be represented with computation graphs that remain similar when the input sets
themselves are similar. Our dynamic update algorithm takes advantage of stability to update the output efficiently
by propagating the input modification through the computation graph. To assess the practicality of our approach we
present a prototype implementation. Our experiments show that the algorithm can be implemented efficiently such
that it delivers performance consistent with our theoretical bounds. We expect a well-polished implementation will
provide static performance comparable to the state of the art, and dynamic performance orders of magnitude faster.

14

References
[1] Umut A. Acar. Self-Adjusting Computation. PhD thesis, Department of Computer Science, Carnegie Mellon

University, May 2005.

[2] Umut A. Acar, Guy E. Blelloch, Matthias Blume, and Kanat Tangwongsan. An experimental analysis of self-
adjusting computation. In Proceedings of the ACM SIGPLAN Conference on PLDI, 2006.

[3] Umut A. Acar, Guy E. Blelloch, Kanat Tangwongsan, and Duru Türkoğlu. Robust Kinetic Convex Hulls in 3D.
In 16th Annual European Symposium on Algorithms, 2008.

[4] Umut A. Acar, Benoı̂t Hudson, Gary L. Miller, and Todd Phillips. SVR: Practical engineering of a fast 3D
meshing algorithm. In International Meshing Roundtable, pages 45–62, 2007.

[5] Marshall Bern, David Eppstein, and John R. Gilbert. Provably Good Mesh Generation. Journal of Computer
and System Sciences, 48(3):384–409, 1994.

[6] J.-D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec. Applications of random sampling to
on-line algorithms in computational geometry. Discrete Computional Geometry, 8:51–71, 1992.

[7] Siu-Wing Cheng, Tamal Krishna Dey, Herbert Edelsbrunner, Michael A. Facello, and Shang-Hua Teng. Sliver
Exudation. Journal of the ACM, 47(5):883–904, 2000.

[8] Nuttapong Chentanez, Ron Alterovitz, Daniel Ritchie, Lita Cho, Kris K. Hauser, Ken Goldberg, Jonathan R.
Shewchuk, and James F. O’Brien. Interactive simulation of surgical needle insertion and steering. In Proceedings
of ACM SIGGRAPH, Aug 2009.

[9] L. Paul Chew. Guaranteed-quality triangular meshes. Technical Report TR-89-983, Department of Computer
Science, Cornell University, 1989.

[10] Kenneth L. Clarkson, Kurt Mehlhorn, and Raimund Seidel. Four results on randomized incremental construc-
tions. Computational Geometry Theory and Application, 3:185–212, 1993.

[11] Narcis Coll, Marité Guerrieri, and J. Antoni Sellarès. Mesh modification under local domain changes. In 15th
Intl. Meshing Roundtable, pages 39–56, 2006.

[12] Sariel Har-Peled and Alper Üngör. A time-optimal Delaunay refinement algorithm in two dimensions. In 21st
Symposium on Computational Geometry, pages 228–236, 2005.

[13] Benoı̂t Hudson. Dynamic Mesh Refinement. PhD thesis, School of Computer Science, Carnegie Mellon Univer-
sity, December 2007. Available as Technical Report CMU-CS-07-162.

[14] Benoı̂t Hudson, Gary L. Miller, and Todd Phillips. Sparse Voronoi Refinement. In 15th Intl. Meshing Roundtable,
pages 339–356, 2006. Long version in Carnegie Mellon University Tech. Report CMU-CS-06-132.

[15] Benoı̂t Hudson and Duru Türkoğlu. An efficient query structure for mesh refinement. In Canadian Conf. on
Comp. Geometry, 2008.

[16] Ruy Ley-Wild, Umut A. Acar, and Matthew Fluet. A cost semantics for self-adjusting computation. In Proceed-
ings of the 26th Annual ACM Symposium on Principles of Programming Languages, 2009.

[17] Xiang-Yang Li and Shang-Hua Teng. Generating well-shaped Delaunay meshes in 3D. In Proceedings of the
12th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 28–37, 2001.

[18] Xiang-Yang Li, Shang-Hua Teng, and Alper Üngör. Simultaneous refinement and coarsening for adaptive mesh-
ing. Engineering with Computers, 15(3):280–291, 1999.

15

[19] Gary L. Miller, Dafna Talmor, Shang-Hua Teng, Noel Walkington, and Han Wang. Control Volume Meshes
Using Sphere Packing: Generation, Refinement and Coarsening. In 5th Intl. Meshing Roundtable, pages 47–61,
1996.

[20] Neil Molino, Zhaosheng Bao, and Ron Fedkiw. A virtual node algorithm for changing mesh topology during
simulation. In SIGGRAPH, 2004.

[21] Doug Moore. The cost of balancing generalized quadtrees. In SMA ’95: Proceedings of the third ACM symposium
on Solid modeling and applications, pages 305–312, New York, NY, USA, 1995. ACM.

[22] Ketan Mulmuley. Randomized multidimensional search trees (extended abstract): dynamic sampling. In Pro-
ceedings of the 7th Annual Symposium on Computational Geometry, pages 121–131, 1991.

[23] Han-Wen Nienhuys and A. Frank van der Stappen. A Delaunay approach to interactive cutting in triangulated
surfaces. In fifth Intl. Workshop on Algorithmic Foundations of Robotics, 2004.

[24] Jim Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh generation. J. Algorithms,
18(3):548–585, 1995.

[25] Otfried Schwarzkopf. Dynamic maintenance of geometric structures made easy. In Proceedings of the 32nd
Annual Symposium on Foundations of Computer Science, pages 197–206, 1991.

[26] Jonathan Richard Shewchuk. Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predi-
cates. Discrete & Computational Geometry, 18(3):305–363, 1997.

[27] Daniel Spielman, Shang-Hua Teng, and Alper Üngör. Parallel Delaunay refinement: Algorithms and analyses.
IJCGA, 17:1–30, 2007.

[28] Dafna Talmor. Well-Spaced Points for Numerical Methods. PhD thesis, Carnegie Mellon University, August
1997. Available as Technical Report CMU-CS-97-164.

16

