Deep Learning Theory

Yoshua Bengio
November 20, 2015

Toyota Technological Institute at Chicago

Universiteé fu‘l

de Montréal




Progress in Deep Learning Theory

- Exponential advantaqge of distributed
representations

- Exponential advantage of depth
« Myth-busting : non-convexity & local minima

 Probabilistic interpretations of auto-
encoders



Machine Learning, Al
& NO Free Lunch

e Four key ingredients for ML towards Al

|. Lots & lots of data

2. Very flexible models

3. Enough computing power
y

Powerful priors that can defeat the curse of
dimensionality



ML I0l. What We Are Fighting Against:
The Curse of Dimensionality

To generalize locally,
need representative
examples for all
relevant variations!

Classical solution: hope
for a smooth enough
target function, or
make it smooth by
handcrafting good
features / kernel

1 dimension:
10 positions

2 dimensions:
100 pt;si tions

» 3 dimensions:
1000 positions!



Not Dimensionality so much Qs
Number of variations

(Bengio, Dellalleau & Le Roux 2007)
 Theorem: Gaussian kernel machines need at least k examples

to learn a function that has 2k zero-crossings along some line

2N AV

e Theorem: For a Gaussian kernel machine to learn some

maximally varying functions over d inputs requires 0(29)
examples



Putting Probability Mass where
Structure is Plausible

Empirical distribution: mass at
training examples

* Smoothness: spread mass around

Insufficient

e Guess some ‘structure’ and
generalize accordingly



Bypassing the curse of
dimensionality

We need to build compositionality into our ML models

Just as human languages exploit compositionality to give
representations and meanings to complex ideas

Exploiting compositionality gives an exponential gain in
representational power
(1) Distributed representations / embeddings: feature learning

(2) Deep architecture: multiple levels of feature learning

Additional prior: compositionality is useful to
describe the world around us efficiently
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Exponential advantage of distributed
representations
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Learning a set of parametric features that are not |
mutually exclusive can be exponentially more statistically
efficient than having nearest-neighbor-like or clustering-
like models



Hidden Units Discover Semantically
Meaningful Concepts

 Zhou et al & Torralba, arXiv1412.6856 submitted to ICLR 2015
 Network trained to recognize places, not objects

Tables

People Lighting
" ¥y Fireplace (| =5.3%, AP=22 9%)

Bed (] =24.6%, AP=81.1%

Mountain (| =11 3%, AP=476%)

Sofa! =108% AP=36.2%)
0 : y -




Each feature can be discovered without
the need for seeing the exponentially
large number of configurations of the
other features

e Consider a network whose hidden units discover the following
features:
* Person wears glasses
* Person is female
 Person is a child
* Etc.
If each of n feature requires O(k) parameters, need O(nk) examples

Non-parametric methods would require O(2") examples
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Exponential advantage of distributed
representations
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Bengio 2009 (Learning Deep Architectures for Al, F & T in ML)

Montufar & Morton 2014 (When does a mixture of products
contain a product of mixtures? SIAM J. Discr. Math)

Longer discussion and relations to the notion of priors: Deep
Learning, to appear, MIT Press.

Prop. 2 of Pascanu, Montufar & Bengio ICLR’2014: number of
pieces distinguished by 1-hidden-layer rectifier net with n units
and d inputs (i.e. O(nd) parameters) is



Classical Symbolic AI vs Represe
Learning

 Two symbols are equally far from each other

. eorttre Inton
e Concepts are not represented by symbols in our Y

brain, but by patterns of activation
(Connectionism, 1980’s)

Output units

o

ca
t

Hidden units

DaV|d Rumelhart

perso
n

Input
units
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Neural Lahquage Models: fighting one

exponential by another one!

e (Bengio et al NIPS’2000)
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Neural word embeddings: visualization
directions = Learned Attributes

need help
come
go
take
qive keep
make  get
meet srig continue
expect Wt become
think
say remain
are .
s
be
Wergas
being
been
haqwas
have
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Analogical Representations for Free
(Mikolov et al, ICLA 2013)

* Semantic relations appear as linear relationships in the space of
learned representations

* King — Queen = Man—-Woman
e Paris — France + Italy = Rome

France

S/

()
Paris

Rome
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Exponential advantage of depth

Theoretical arguments:

=

Logic gates
2 layers of — Formal neurons = universal approximator
RBF units o
RBMs & auto-encoders = universal approximator

Theorems on advantage of depth:

(Hastad et al 86 & 91, Bengio et al 2007, Bengio & N

Delalleau 2011, Martens et al 2013, Pascanu et al

2014, Montufar et al NIPS 2014) 1 2 3 2

Some functions compactly
represented with k layers may require
exponential size with 2 layers

>



Why does it work? No Free Lunch

* It only works because we are making some assumptions about
the data generating distribution

* Worse-case distributions still require exponential data

e But the world has structure and we can get an exponential gain
by exploiting some of it
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Exponential advantage of depth

e Expressiveness of deep networks with piecewise linear
activation functions: exponential advantage for depth
(Montufar et al, NIPS 2014)

* They can split the input space in many more (not-independent)
linear regions, with constraints, e.g., with abs units, each unit
creates mirror responses, folding the input space:
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subroutine1 includes gybroutine? includes

subsub1 code and  sybsub2 code and
subsub2 code and  sybsub3 code and

subsubsub1 code subsubsub3 code and ...

\\ /

main

“Shallow” computer program



subsubsub1 subsubsub?

subsubsub3
subsub1 sUbsub2 subsub3
sub1 sub?2 sub3
\ main//

“Deep” computer program



Sharing Components in a Deep
Architecture

Polynomial expressed with shared components: advantage of
depth may grow exponentially

(x129)(Xox3) + (x129)(2324) + (x2X3)2 + (X2X3)(2374)
Sum-product

networks (SPNs)

Theorems in

(X9X3) + (x324) (Bengio & Delalleau, ALT 2011;
Delalleau & Bengio NIPS 2011)

However, the expressive
power of SPNs used to
represent distributions may

be fundamentally limited
(Martens & Medabalini 2014)



Exponential advantage of depth

22

Expressiveness of deep networks with piecewise linear
activation functions: exponential advantage for depth
(Montufar et al, NIPS 2014)

Number of pieces distinguished for a network with depth L and

n.units per layer is at least
L—1 . no o nL
(Izll LnoJ ) 2 ( j )

7=0
or, if hidden layers have width n and input has size n,

n L—1)ng n
Q (W) =170 o



A Myth is Being Debunked: Local Minima
in Neural Nets

— Convexity is hot needed
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(Pascanu, Dauphin, Ganguli, Bengio, arXiv May 2014): On the
saddle point problem for non-convex optimization

(Dauphin, Pascanu, Gulcehre, Cho, Ganguli, Bengio, NIPS’ 2014):
Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization

(Choromanska, Henaff, Mathieu, Ben Arous & LeCun, AISTATS’
2015): The Loss Surface of Multilayer Nets



WWolfram Global Problem

Saddle Points

* Local minima dominate in low-D, but ha |
saddle points dominate in high-D oL

* Most local minima are close to the
bottom (global minimum error)

* o0
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Saddle Points During Training

* Oscillating between two behaviors:
* Slowly approaching a saddle point
* Escaping it
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Low Index Critical Points

Choromanska et al & LeCun 2014, ‘The Loss Surface of Multilayer Nets’
Shows that deep rectifier nets are analogous to spherical spin-glass models

The low-index critical points of large models concentrate in a band just
above the global minimum
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The Next Challenge:
Unsupervised Learning

* Recent progress mostly in supervised DL

« Real technical challenges for unsupervised DL

e Potential benefits:
 Exploit tons of unlabeled data
* Answer new questions about the variables observed
* Regularizer — transfer learning — domain adaptation
* Easier optimization (local training signal)
* Structured outputs

27



Why Latent Factors & Unsupervised
Representation Learning? Because of
Causality.

* If Ys of interest are among the causal factors of X, then

P(X)
is tied to P(X) and P(X]|Y), and P(X) is defined in terms of P(X]Y), i.e.
* The best possible model of X (unsupervised learning) MUST
involve Y as a latent factor, implicitly or explicitly.

* Representation learning SEEKS the latent variables H that
explain the variations of X, making it likely to also uncover.
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Probabilistic interpretation of auto-
encoders

* Manifold & probabilistic interpretations of auto-encoders
* Denoising Score Matching as inductive principle

(Vincent 2011)
* Estimating the gradient of the energy function
(Alain & Bengio ICLR 2013)

* Sampling via Markov chain

(Bengio et al NIPS 2013; Sohl-Dickstein et al ICML 2015)
* Variational auto-encoders

(Kingma & Welling ICLR 2014)
(Gregor et al arXiv 2015)
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Denoising Auto-Encoder

e Learns a vector field pointing towards hig@ .
| prior: examples

probability direction (Alain & Bengio 2013) concentrate near a

5 310gp(:1:) Iower.dimensional
P “manifold”

+ Some DAEs correspond to a kind of G

reconstruction(z) —x — o
aforrupted inpyt

RBM with regularized Score Matching
(Vincent 2011)

[equivalent when noise—0]
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Denoising Auto-Encoder Markov Chain

corrupt

C(X|X)

The corrupt-encode-decode-sample Markov chain associated with a DAE
samples from a consistent estimator of the data generating distribution
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variational Auto-Encoders (VAES)

(Kingma & Welling 2013, ICLR 2014)
(Gregor et al ICML 2014; Rezende et al ICML 2014)

(Mnih & Gregor ICML 2014; Kingma et al, NIPS 2014) P(hs)

—

* Parametric approximate
inference
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* Successor of HeImholtz
machine (Hinton et al ‘95)
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* Maximize variational lower
bound on log-likelihood: Q(hs
min K L(Q(z, h)||P(z, h))
where ()(z) = data distr. l T
or equivalently Q(x)
P(z, h)
Q(h|x)
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N

max »  Q(hlz)log z|h) + KL(Q(h|z)||P(h))
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Geometric Interpretation of VAES

* Encoder: map input to a new space
where the data has a simpler
distribution

* Add noise between encoder
output and decoder input: train
the decoder to be robust to
mismatch between encoder output
and prior output.
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Denoising Auto-Encoder vs Diffusion

Inverter (sohl-Dickstein et al ICML 3015)

* DAE: after 1 step of
diffusion (adding
noise, Q), try to
reconstruct the clean
original (with P).

« Diffusion inverter:
after each step of
diffusion, try to
stochastically undo
the effect of
diffusion.
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Encoder-Decoder Framework

e Intermediate representation of meaning
= ‘universal representation’
* Encoder: from word sequence to sentence representation
e Decoder: from representation to word sequence distribution

Decoder
English sentence English sentence yl«— /yi‘ i,
. Y
5 5 QO =0
= = Varmadar 0 | M N
o © Tl IIrrniiniinel
= = —
P> o]0}
(] c
= =
s = 0
L
Frenctdeantence Englisldegntence X * *

Fnrndar
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Attention Mechanism for Deep Learning

e Consider an input (or intermediate) sequence or image

* Consider an upper level representation, which can choose
« where to look », by assigning a weight or probability to each
input position, as produced by an MLP, applied at each position

37
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End-to-End Machine Translation with
Recurrent Nets and Attention Mechanism

 Reached the state-of-the-art in one year, from scratch

{a) English—French {(WMT-14)

NMT(A) | Google | P-SMT

NMT 32.68 30.6"
+Cand 33.28 -

+UNK 33.99 32.7°
+Ens 36.71 36.9°

37.03°

{b) English—>German (WMT-15) (¢) English—>Czech (WMT-15)

Model Note Model Note

24.8 Neural MT 18.3 Neural MT

24 .0 U.Edinburgh, Syntactic SMT 18.2 JHU, SMT+LM+0OSM-Sparse
236 LIMSI/KIT 17.6 CU, Phrase SMT

22.8 U.Edinburgh, Phrase SMT 17.4 U.Edinburgh, Phrase SMT
229 KIT, Phrase SMT 16.1 U.Edinburgh, Syntactic SMT
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Image-to-Text: Caption Generation with
Attention

f=(a men, is, jurping, into, a lake .)

Recuret  Word
State Ssample

Attention
Mechanism

= """.A'i’lf&é;ion
) oo

h.

)

Convolutiond Neurd Network

{Xu et al.. 2015}, {Yao et al.. 2015}
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standing(0.20)

zebra{0.23)

Paying
Attention to
Selected Parts
of the Image
—r— While Uttering
' Words

field{0.24)

A___|
[bird |
flying

over

14x14 Feature Map

d

body

of

water

1. Input 2. Convolutional 3, RNN with attention 4. Word by
Image Feature Extraction over the image word
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Speaking about what one sees

A(0.97) stop(0.36) sign(0.19)

is(0. 22} on(0.25) a(ﬂ 21) road(0.26)

with(0.28) al(0.30) mountain(0.44) in(0.37)

-!IL

me({} 21) backgmundm 11) (0. 13}




Show, Attend and Tell: Neural
Imaqge Caption Generation with
Visual Attention

Results from (Xu et al, arXiv Jan. 2015,
ICML 2015)

Table 1. BLEU-1,2.3 A/METEOR metrics compared to other methods, T indicates a different split, {—) indicates an unknown wettic, o
indicates the authors Kindly provided missing metrics by personal communication, 23 indicates an enscmble, a indicates using AlexNet

BLEU
Dataset Model B-1 | B-2 | B-3 | B-4 | METEOR
Google NIC(Vinyals et al_, 2014)" > 63 41 27 — —
Flicki&k Log Bilinear (Kiros et al., 2014a)° 656 424 277 177 17.31
Soft-Attention 67 448 299 195 18.93
Hard- Attention 67 457 314 21.3 20.30
Google NICT°> 663 423 277 183 —
e Log Bilinear 600 38 254 171 16.88
Flickr30k Soft-Attention 667 434 288 191 18.49
Hard-Attention 66.9 439 29.6 199 18.46
CMU/MS Research (Chen & Zitnick, 2014)" — — — — 2041
MS Rescarch (Fang ct al., 2014)77 — — — — 20.71
BRNN (Karpathy & Li, 2014)° 64.2 451 304 203 —
COCo Google NICT>> 66.6 461 329 246 —
Log Bilinear® 70.8 489 344 2473 20.03
Soft-Attention 707 492 344 243 23.90
Hard-Attention 71.8 504 357 2540 23.04
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o
o,

g

A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
— mountain in the background,

E

A little girl sitting on a bed with A group of peaple sitting on a hoat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.
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And the bad

A man wearing a hat and
a hat on a skateboard.

i
R

A person is standing on a beach A woman is sitting at a table A man is talking on his cell phone
with a surfboard. with a large pizza. while another man watches.
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The Next Frontier: Reasoning and
Question Answering

e Currently working on artificial tasks, with memory networks:

Joe went to the garden then Fred picked up the milk; Joe moved to the bathroom and Fred dropped the
milk, and then Dan moved to the living_room.

Where is Dan? A: living room I believe

Where is Joe? A: the bathroom

Fred moved to the bedroom and Joe went to the kitchen then Joe took the milk there and Dan journeyed
to the bedroom; Joe discarded the milk.

Where is the milk now ? A: the milk is in the kitchen

Where is Dan now? A: I think he is in the bedroom

Joe took the milk there, after that Mike travelled to the office, then Joe went to the living_room, next Dan
went back to the kitchen and Joe travelled to the office.

Where is Joe now? A: I think Joe is in the office

From “Memory Networks”, Weston et al. ICLR 2015;
“End-to-end memory networks”, Sukhbatar et al. NIPS’2015

Sam walks into the kitchen. Brian is a lion. Mary journeyed to the den.

Sam picks up an apple. Julius is a lion. Mary went back to the kitchen.

Sam walks into the bedroom. Julius is white. John journeyed to the bedroom.

Sam drops the apple. Bernhard is green. Mary discarded the milk.

Q: Where is the apple? Q: What color is Brian? Q: Where was the milk before the den?
A. Bedroom A. White A. Hallway
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Ongoing Project: Knowledge Extraction

* Learn to fill the memory network from natural language
descriptions of facts

* Force the neural net to understand language
e Extract knowledge from documents into a usable form

a6 The Free Encyclopedia



Conclusions

* Theory for deep learning has progressed substantially on several
fronts:

* why it generalizes better,
* why local minima are not the issue people thought, and
* the probabilistic interpretation of deep auto-encoders

* But more theory would be great! Many things remain
mysterious...
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